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Abstract

The original virial-biased sampling of Mezei [1] that changes the simulation cell’s volume
isotropically has been generalized to anisotropical changes. Calculations on liquid water and
the aqueous solution of the dimethyl phospate — sodium ion pair demonstrate the computa-
tional gains of the virial biased techniqes.



1. Introduction

Monte Carlo computer simulation in the isothermal-isobaric (7, P, N) ensemble requires
periodic change of the simulation cell. Such steps are computationaly expensive since all
intermolecular distances change. It has been shown earlier [1] that replacing the sampling
of the volume change from a uniform distribution by a sampling proportional to the virial
sum, called virial-biased sampling allows for larger volume changes at each try. This in
turn allows the less frequent attempts of volume changes, resulting in significant savings of
computational efforts. It has been also noted [2] that simulations in the Gibbs ensemble
would also benefit from such biased sampling.

The purpose of this paper is to show that if the volume changes are not performed isotropi-
cally than additional computational gain can be achieved if the change of the simulation cell
along each direction is biased independently based on the components of the virial sum. This
advantage will be of particular significance when the simulation cell is inherently anisotropic.

2. Theory and Background

One of the versions of the virial-based volume change was designed along the lines of the
force-biased sampling of Pangali, Rao and Berne [3]. The role of the force was played by the
quantity Fy:
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where U is the energy of the system, V' is the volume of the simulation cell, p is the pressure,
N is the number of molecules, 7" is the absolute temperature and £ is the Boltzmann factor.
The second equality is valid for pairwise additive potentials u(rj,rj) where the rj are the
coordinates of the molecular centers — as follows from the expression of pressure in terms
of the virial sum. The sampling of the volume change 6V is from the distribution

exp(AFyoV/ET)

POV) == av Ry

(2)

where AV is the allowed range for the volume change, A is a scaling factor whose value was
set to 1/2 (following Ref. 2) and n(AV, Fy, \) is the normalization factor:
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The acceptance probability Pacc of a biased step is given as

Pace = min{1, exp[(Uy — Uy — POV)/kT + N(InVy — InVj)] *
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where the subscripts o and n refer to the configurations before and after the attempted move.
Dropping the second and third factors in Eq. (4) reduces it to the acceptance probability of
an unbiased step.

Given a source of random numbers ¢ with uniform distribution in the interval [0,1], the
sampling from the above distribution results in volume changes expressed as
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The anisotropic virial biasing introduced here samples the changes along the x direction, dx
from the distribution
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where AVy is the range the cell volume is allowed to change in the x direction (during a
single move), Ey, I, are the simulation cell edges in the y and z directions, respectively, and
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Here (g—‘g)X is the contribution of the x component to . Again, for pairwise additive
potentials u(rj, rj)
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Similar expressions hold for the y and z directions. When the cell dimensions are changed
independently in a biased manner, then P(AV) is replaced by P(AVy) P(AVy) P(AVy).
Thus, in Eq. (4) Fy and n(AV, Fy, A) should be replaced by the corresponding products to
yield the acceptance probability Pacc:
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Since the anisotropic sampling described here changes the shape of the cell there are certain
limitations in its application depending on the choice of the periodic cell. Cells based on
hexagonal or face-centered cubic close packing require fixed ratios of edges, completely ex-
cluding anisotropic sampling. Prism-shaped cells (like hexagonal or triangular prisms) allow



only partially anisotriopic sampling: changes along the two axes perpendicular to the prism
axis have to be correlated. Rectangular cells allow any edge ratio.

For partially anisotropic sampling (assuming that the prism axis is along the x direction)
the volume change involves a change dz along the x direction and a change of area dyz in
the prism’s cross section using biasing forces Fx and Fy;, respectively with

The probability of selecting dyz is given by replacing dx, Fx and AV in Eq. (6) by 0yz, Fxy
and AVy,, respectively (AVy, being the allowed range of volume change due to the change
of area in the zy plane).

It should be stressed that any version of the virial-biased sampling requires the calculation
of the forces on the molecules — a calculation not normally required during Monte Carlo
simulations, adding about 30% to the computational burden. However, if the molecular
displacement steps are done using the force-biased sampling [3], then the forces are already
available for virial biasing.

3. Calculations and Results

We have compared the efficiency of the new anisotropic virial biased method with that of the
ordinary unbiased isothermal-isobaric Monte Carlo method [4] as well as with the isotropic
virial bias technique [1] in room-temperature aqueous systems. For the comparison of the
efficiency of the various sampling techniques the average magnitude of the accepted volume
changes 0Vyce seems to be an appropriate quantity. However, it is an adequate indicator of
the sampling efficiency of only those techniques in which the sign of the volume change (i.e.,
whether the system is expanding or contracting) is correlated along the three axes of the
simulation box. In the case of the anisotropic virial-biased sampling the cell may expand
along one axis and shrink along an other one in the same volume change step, which makes
the quantity 6Vaee an inadequate measure of the sampling efficiency in this case. Therefore
we have calculated the quantity 6 XY Zacc:
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It should be noted that for correlated changes of the cell size along the three axes in the
limit of small steps 0. XY Zacc agrees with 0Vice.

We have compared the efficiency of the different sampling methods in three different systems.
Both systems I and II have contained 512 water molecules. The initial simulation box was
cubic in system I with edge length 26.0 A, whereas in system II it was rectangular with
Fx=40.0 A, and Ey = E,=20.0 A at the beginning of the simulation. System III was a
dilute aqueous solution of dimethylphosphate-sodium, containing one (CH3)oPOs5 Na™ ion
pair and 512 water molecules in the same initial rectangular box as system II. The ion
pair has then been kept fixed in the entire simulation. Water-water interactions have been

described by the TIP4P model [5] whereas the parameters of the ion-water interactions have
been taken from the AMBER library [6].



The three systems have been equilibrated by 12 million particle displacement steps using force
biased sampling [3]. The maximum translation of the water molecules and their maximum
rotation around a randomly selected space-fixed axis in one particle displacement step have
been set to 0.275 A and 20°, respectively. The obtained rate of acceptance of these steps
was about 0.5. Every 200 particle displacement step was followed by a volume change
trial. During the equilibration period no biasing was employed in these steps. After the
equilibration process was finished two separate simulations have been performed on each
system with all the three sampling methods (i.e., unbiased, isotropic virial biased, anisotropic
virial biased). In run A the cell size have been changed along all the three axes simultaneously
in each volume change step, whereas in run B it has only been altered along one of the axes
in one step. In every simulation run 5 million force biased particle displacement steps have
been performed, every 200 of them being followed by a volume change step. The stepsize
parameters (AV, AVy, AVy, AV,) have been tuned to yield about a 25% acceptance rate
for the volume change steps. (The obtained rates of acceptance have been between 23.5%
and 27.0% in every simulation). In this way the efficiency of the different sampling methods
can be compared directly through the resulting 0 XY Z,¢c values. The energy and density of
the systems were found to be unaffected by the employed sampling method and agreed with
each other within the error limits of their calculation.

Table 1. Average cell edges and sampling efficiencies (6XY Zacc)/ A3 as obtained from sim-
ulations with different sampling methods with a volume change acceptance rate of about
25%. Systems I, IT and III are waters in a cubic box, waters in a prism-like box and aqueous
solutin of dimethyl phosphate-sodium in a prism-like box, respectively. For further details,
see text.)

RUN A RUN B
unbiased isotropic  anisotropic  unbiased isotropic  anisotropic
virial bias  virial bias virial bias virial bias
Sytem I 73.38 112.83 167.81 55.69 71.37 68.59
Sytem II 61.28 87.95 115.21 47.76 62.89 57.86
System III 59.83 88.86 114.01 48.61 61.37 58.37

The obtained d XY Zy.c values as well as the average lengths and standard deviations of the
three edges of the simulation box are summarised in Tables 1, 2 and 3 as obtained from the
different simulations of systems I, II, and III, respectively. As is evident from the resulting
data, the anisotropic virial biased method proved to be the most efficient one in the A type
runs, i.e., when the cellsize was altered in all three dimensions simultaneously in each volume
change steps. The resulting 0 XY Z,cc value is about 130% and 50% higher as obtained with
the new method than with uniform and isotropic virial biased sampling, respectively, in the
case of system I. These values are about 90% and 30% for systems II and 111, i.e., those having
long rectangular simulation box. This difference in the computational gain obtained with
the new anisotropic virial biased sampling method between systems having simulation boxes
of different shape can be explained with the fact that a given volume change requires larger
change of the intermolecular distances along the longest edge of the rectangular simulation
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box than along any direction in a cubic one, and this involves larger changes in the energetics
of the system. This is also the reason why run A always results in larger 6 XY Z,c. values
than run B. Namely, the change of the intermolecular distances along the changing axis for a
given volume change in a B type run is about three times large as the same distance change
in an A type run. There is, of course, no reason for using B type volume changing steps in
the simulation of isotropic systems. On the other hand, when the simulated system is highly
anisotropic (e.g., interfaces, liquid crystals, surfactant solutions, lipid membranes, etc.) the
use of this kind of volume changing steps could be mandatory for obtaining reliable results
(since the aspect ratio of such systems may not be know in advance).

When comparing the efficiency of the three sampling techniques for B type runs the resulting
picture is somewhat different from the case of A type runs. Here the efficiency of the isotropic
and anisotropic virial biased methods are roughly equivalent, the isotropic method being
slightly (about 4-8%) better than the anisotropic one whereas again both methods result
in considerably larger (20-30%) 0XY Zace values than the unbiased sampling. The reason
of the relatively small computational gain of virial biasing (compared to the A-type runs)
again lies in the fact that due to the required relatively large changes of the intermolecular
distances the largest possible volume changes are relatively small in each step and this limits
the possible increase of Ve obtainable by any kind of sampling.

It is surprising that the isotropic virial biased method results in better sampling efficiency
for B type runs than the anisotropic one, although this difference is rather small. The reason
of this could be that the anisotropic method can largely distort the shape of the simulation
box (as can also be seen from the resulting mean values and fluctuations of the cell edges,
see Tables 1-3), which can then lead to a slight increase of the sampling efficiency. In order
to investigate this point further we have repeated the virial biased B type runs for all the
three systems with smaller stepsize parameters yielding an about 50% rate of accepted and
tried volume change steps instead of 25%. The results of these runs are summarised in Table
4. As demonstrated, the relative efficiency of the two virial biased methods is now reversed:
the anisotropic method is slightly (by about 4%) more efficient for systems I and II and
almost the same for system II. These findings suggest that there is no important difference
between the efficiency of the two virial biased sampling methods in B type runs.

Summarising, the new anisotropic virial biased isothermal-isobaric Monte Carlo method
provides a great improvement in the volume sampling efficiency for isotropic systems, when
volume changes can be performed simultaneously along all the three axes of the simulation
box. For anisotropic systems when the volume can only be changed along one axis in one step
the sampling efficiency of the new method does not differ largely from that of the isotropic
virial biased technique but it is still considerably better than the performance of the unbiased
sampling.
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