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ABSTRACT: It is shown that, by optimizing the placement of a solute in a
solvent droplet or in a periodic simulation cell, the number of solvent molecules
can be reduced without affecting the quality of the simulation. Q 1997 by John
Wiley & Sons, Inc. J Comput Chem 18: 812]815, 1997
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Introduction

imulations of solvated molecules are gener-S ally performed either under periodic bound-
ary conditions or in a droplet of solvent containing
the solute. While realistic simulation of solvated
systems requires the presence of several solvent
layers around the solute, each additional layer
increases progressively the number of solvent
molecules to be included in the model, resulting in
a concomitant large increase in the computing time
requirements for simulations. Once the required
number of layers is completed, still additional sol-
vent molecules are needed whose sole role is to
keep the model from producing artifactual effects
Ž . Žfor droplets or to just fill the space for systems

.with periodic boundary conditions . The purpose
of this article is to show that, in most cases, the
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position of the solute within the simulation system
affects the number of additional solvent molecules
needed for a given level of treatment; thus, by its
judicious choice, it is possible to reduce signifi-
cantly the number of these additional solvent
molecules by optimal positioning of the solute
within the droplet or the periodic cell. Because
such optimizations can be performed at negligible
or small computational expense, the net result is a
significant saving in both computation time and
storage requirements without compromising the
accuracy of the results.

For simulations without periodic boundary con-
ditions it has been shown that surrounding a non-
spherical solute with a solvent layer of uniform
thickness will lead to artifactual stress due to sur-
face tension.1 Thus, the initial layer has to be
completed into a sphere. The location of the center
of this sphere, however, will affect the number of
extra solvent molecules needed to fill in this sphere.
This number will be minimal if the sphere’s center
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coincides with the center of the smallest sphere that still
encloses the solute. Besides reducing the number of
solvent molecules required to form a layer of given
minimum thickness, use of the optimized center
will also minimize the fluctuation in the layer
thickness around the solute, resulting in a more
well-balanced system. Note that, when the solvent
is water, it is reasonable to exclude the hydrogens
of the solute during its positioning because, inde-
pendent of its polarity, the distance of a
hydrogen-bonded water’s oxygen from the nearest

Ž .heavy atom on a solute containing first-row atoms
˚is about 3 A.

Periodic boundary conditions have been intro-
duced to avoid the introduction of an explicit
boundary. However, they also impose unwanted
periodicity and symmetry onto the system. The
effect of periodicity, fortunately, can be kept small
by keeping the periodic images as far apart as
possible. Usually the image]image distance is con-

Ž .trolled by the edge s of the periodic cell, most
frequently chosen as a cube or a rectangular box. It
has been long recognized, however, that the cubic
box for periodic boundary conditions is generally
not optimal and other simulation cell shapes can
result in larger image]image distances for a given

Ž .volume i.e., number of solvent molecules . For
bulk liquid simulations the optimum is reached if
one chooses the cell with the largest inscribed
sphere for a given volume. For simulating a solu-
tion with an arbitrary shaped solute it is the closest
distance between two solute atoms on different solute
images that is to be maximized. Generally, this opti-
mum is approximated by choosing a simulation

Žbox that follows the shape of the solute e.g., a
long rectangular cell for potential of mean force
calculations or a hexagonal prism or simulating a

.DNA fragment . However, in most cases, the
smallest image]image distance can also be in-
creased by optimizing the orientation of the solute
within this cell.

To see the effect of both the box shape and
solute orientation on the smallest image]image
distance, consider a rodlike molecule of length l in
the two-dimensional periodic system shown in
Figure 1. The repeating unit is a rectangle with
edges X and Y along the x- and y-axes, respec-
tively. The smallest distance, D y, between rods

yŽ . Ž .translated along the y-axis is D f s Y cos f as
seen from the triangle A9 A0 C. Clearly, this is
maximal for f y s 0. The smallest distance be-opt
tween rods translated along the x-axis, D x, is the
smaller of the distances AB9 and AB0. Straightfor-
ward calculation shows that D x takes its largest

FIGURE 1. Two-dimensional periodic cells with a linear
rod as solute.

value at:

1r2x x 2 2 xŽ . Ž . Ž .D f s l q X y 2 lX cos f 1Ž .opt opt

where:

x y1 Ž . Ž .f s sin Yrl 2opt

Thus, for X G l q Y the optimal orientation, f ,opt
y Ž .is at f s f and for Y G l q X is at f s p .opt opt opt

For intermediate cases, however, the optimal angle
is obtained by simultaneous consideration of D x

y xŽ x . yŽ x .and D . For D f F D f , the optimal ori-opt opt
entation is clearly f x . However, when the oppo-opt
site is true, the optimum is reached at a smaller
angle, obtained from the condition:

y 2 2Ž . Ž .D f s Y cosf s l q X y 2 lX cos f'otp opt opt

x Ž . Ž .s D f 3opt

giving:

2 2 2 2'ylX q l X q l q X
Ž . Ž .cos f s 4opt 2Y

The above discussion not only shows the potential
importance of optimizing the orientation of the
solute but it also demonstrates the importance of
the choice of relative magnitudes of the simulation
cell parameters. In cases where the optimal orien-
tation of the solute does not depend on all of the
cell parameters, the remaining ones can be re-
duced without compromising the optimum,
thereby reducing the volume of the simulation cell
without reducing the smallest image]image ap-

Žproach e.g., for Y ) l q X, Y can be reduced to
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l q X without affecting the smallest image]image
.distance .

Joint consideration of the optimal orientation
and cell parameters can be formulated as the prob-
lem of minimizing the volume of the simulation
cell while keeping the nearest approach in the
optimal orientation constant. Here the cell parame-
terization can include not only the values of the
cell dimension but the shape of the cell. The choice
of the face-centered cubic or truncated octahedral
cell for bulk liquid simulation is made in this
spirit. While numerical realization of such opti-
mization can be daunting in general, our simple
model can be examined from this point of view. In
particular, it can be shown that for a given small-
est image]image approach, D, the optimal cell has
X s l q D and Y s D. Obviously, for more com-
plex solutes there is unlikely to be an analytical
solution to this optimization problem, but this
example still provides some justification of the
aforementioned prescription which required that
the shape of the simulation cell follow the shape of
the molecule as closely as possible.

Method

The problem of finding the smallest sphere en-
closing a given set of points is an old one. Several

Žfast algorithms exist for a comparison and list of
.references see ref. 2 , and it has been shown that a

Ž . 3solution can be obtained in O n time. Our real-
ization is a generalization of the century-old
method referred to in ref. 2 as the Chrystal]Peirce
algorithm4,5 to three dimensions. For a system of
Ž 3.O 10 atoms it obtains the result practically in-

stantaneously.
For the optimal placement of a solute in the

periodic cell we start with cell parameters that are
chosen to be the smallest possible still enclosing

Žthe solute in its initial orientation, preferably cho-
sen to align the principal axes of the molecule with

.the coordinate axes incremented by half of the
smallest image]image distance acceptable.

Next, we optimize the solute orientation in this
cell to yield the largest value for the smallest
image]image distance. The smallest image]image
distance for a given orientation is obtained by

� 4considering all pairs of atoms i, j of the solute
and, for every pair, one has to consider all images.
This optimization has to find the Euler angles

Ž .f, c , q such that the rotation matrix, R f, c , q ,

maximizes:

2Ž . Ž . Ž .min R f , c , q r y R f , c , q r y C 5i j k
� 4i , j , k

where r are the coordinates of the solute atomsi
and C are the centers of the image cells surround-k
ing the simulation cell. This optimization is, in
general, more exacting computationally than find-
ing the center of the smallest enclosing sphere. In
our implementation the simplex method from Nu-
merical Recipes6 was used. The symmetry of the
placement of the image cells offer some non-
negligible simplification, however.

The orientational optimization can be signifi-
cantly speeded up if only atoms on the surface of
the solute are considered. For this purpose various
definitions can be considered for a surface atom.
From the mathematical point of view this is a
‘‘risky’’ operation, because for a given definition of
surface it is likely that a set of points can be
constructed for which the optimum would be
missed. Fortunately, atoms on a molecule are dis-
tributed in a rather uniform pattern and such re-
duction is quite ‘‘safe.’’ Using the definition that
an inside atom is bonded to at least three more
atoms, no optimum was found missed.

Once the optimal orientation is selected, the cell
parameters are examined to determine if any of
them can be reduced without affecting the opti-
mum. This can be done by finding out the smallest
value of each that still does not reduce the value of
the smallest image]image distance.

An additional complication is the nonlinearity
of the minimization problem. As a result only a
local minimum is generally found. This necessi-
tates the repetition of the optimization starting
from several different starting orientations. Note
that for elongated solutes each random orientation
has to be checked if the solute is within the simu-
lation cell assumed.

Further optimization of the cell parameters is
still possible, as formulated at the end of the Intro-
duction. However, carrying it out rigorously would
be very costly because each function evaluation
would require a new optimization of the orienta-
tion. Also, as the cell shape has been already
chosen with the solute shape in mind, it is not
likely to yield much further improvement. Thus,
for the purpose of comparison of the various local
minima found by optimizations using different
starting orientations, we found it useful just to
find a scaling factor that scales down the cell
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parameters after optimization until the closest im-
age]image distance is reduced to the originally
targeted value.

Results and Discussion

These optimization techniques were applied to
the moderate-sized proteins, bovine pancreatic

Ž .trypsin inhibitor BPTI and calmodulin. Com-
pared to the radius of the sphere centered at the
center of mass, used by standard modeling pro-
grams such as CHARMM7 or Insight8 for immers-
ing a molecule into a solution, the optimal sphere

˚radius was found to be smaller by about 1 A.
Optimization of the orientation showed larger
gains although at the expense of significantly

Žlonger computations 5]10 minutes on an SGI
.Challenge using R4400 CPU .

For several of the optimizations, it was possible
to decrease one of the cell edges without affecting

˚Žthe nearest approach in one case by 5 A, equiva-
.lent to the elimination of ca. 500 waters . The

importance of trying several different starting ori-
entations should also be emphasized. In our expe-
rience, it seems that, as a minimum, five different
starting orientations should be tried. Besides gen-
erating random rotations, starting from an orienta-
tion that rotates the original x-axis to match the
diagonal of the cell appeared to be useful.

Starting form the crystal structure orientation,
optimization increased the smallest image]image

˚ ˚distance by 1.5 A and 6.5 A for the BPTI and
calmodulin, respectively. If in each orientation the
cells are scaled down until the smallest

˚image]image distance is reduced to 18 A the cell
˚3 ˚3volumes of 97,350 A and 261,379 A in the initial

orientation are reduced to respectively volumes of
˚3 ˚387,406 A and 187,250 A .

Such reductions of volume are equivalent to
eliminating 331 and 2464 waters, respectively. To
put these savings into the context of computational
expenses, note that the storage requirements in-

crease linearly with the number of atoms in the
system and, more significantly, computation time

Žincreases depending on the cutoff scheme em-
.ployed up to quadratically with the number of

atoms. Such gains with minimal investments are
especially important because it is now becoming
increasingly recognized that many properties of
macromolecular solutions require simulations on
the nanosecond time scale.

The optimization algorithms describe din this
study have been incorporated into a Fortran-77
program called Simulaid that is available from the

Ž .author e-mail: mezei@msvax.mssm.edu . For the
optimal orientation determination, the program
automatically generates several input orientations
and performs the optimization steps described
without further manual intervention.
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