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Abstract — A general method is proposed, which tests have shown to be convenient, for the study of
how the following quantities vary with molecular orientation at the lattice sites: (1) the potential produced
by a perfect crystal of multipoles; (2) the interaction energy with a second multipole; (3) the self-energy and
self-potential of a primitive lattice. To make a study of the variation with molecular orientation feasible, it
has been necessary to decompose the calculation into three stages: stage Ia is a function solely of crystal
geometry; stage Ib, which involves the most calculation, can be greatly shortened by the use of any molecular
symmetry; stage II, which is very short compared with stage I, is the only one which requires a quantitative
knowledge of the multipole moments, and, therefore, of the charge distribution. The form of the proposed
procedure — the result of a study of the ice lattice-has been shown to reduce markedly the computation
required and to permit convenient error checks. Numerical constants required for calculations of orders ≤ 5
are given.

1. INTRODUCTION

Many problems involving the interaction of forces arising from discrete or continuous charge distribu-
tions can be simplified by using a Taylor Series Expansion around a conveniently chosen reference point.
For example, although the direct evaluation of the second virial coefficient is not feasible if part of the po-
tential energy is assumed to arise from point charges within each molecule, the problem can be solved using
multipoles which characterize the charge distribution (i.e., using a Taylor Series Expansion).(1)

In the study of crystal structures, such an expansion permits a decomposition into the three stages
specified in the abstract. In some cases, conclusions might then be deduced from stage I which depends solely
upon crystal geometry and molecular symmetry. In any case, the segregation of all use of the uncertain data
on the quantitative charge distribution to a final short step has been shown to make feasible the study of a
range of models and parameters.

The object of the present paper is to present the general equations and techniques for a procedure which
has been shown to reduce markedly the computation required and to permit convenient error checks. One
form of the method is to be used when a single orientation is to be studied; a second form has been shown
to be adapted to the study of sets of orientations.

∗ The work was supported by the Chemical Directorate of the Air Force Office of Scientific Research
under Grant AF-AFOSR 14-63.

1395



2. FORMULATION OF THE PROBLEM AND BASIC NOTATION

Consider two continuous or discrete charge distributions TA and TB contained in two nonintersecting
closed spheres, CA and CB , centered at OA and OB , respectively. Since for each rα in CA and rβ in CB

‖rβ − rα‖−1 possesses a Taylor Series at 〈OA, OB〉 which converges absolutely and uniformly, the interaction
energy has a Taylor Series Expansion which it will be convenient to write in the form

E(〈TA, TB〉) =
∞∑

N=0

EN (〈TA, TB〉)

EN (〈TA, TB〉) =
N∑

n=0

EN
〈n,N−n〉(〈TA, TB〉)

(1)

EN
〈n,N−n〉(〈TA, TB〉): the sum of all terms involving Nth order partial derivatives, where n are evaluated

at OA and (N − n) at OB .

Moreover, it has been shown(2) that n unit vectors, 〈sA,1, . . . , sA,n〉, can be found for TA and (N − n)
for TB , 〈sB,1, . . . , sB,N−n〉 such that the sum of all the Taylor Series terms in EN

〈n,N−n〉 can be replaced by a
single term of the same form.∗ Thus, if si denotes the ith member of a sequence formed from these vectors,
then

EN
〈n,N−n〉(〈TA, TB〉) =

(−1)nBp
(n)
A p

(N−n)
B

n!(N − n)!
×

{
N∏

i=1

(si · ∇α)‖rβ − rα‖−1

}
〈OA,OB〉

=
(−1)nAp

(n)
A p

(N−n)
B

n!(N − n)!
×

{
N∏

i=1

(si · ∇β)‖rβ − rα‖−1

}
〈OA,OB〉

(2)

∇rγ ≡ ∇γ ≡ 〈∂/∂X1
γ , ∂/∂X2

γ , ∂/∂X3
γ〉 (in rectangular Cartesian coordinates)

p
(n)
A , p

(N−n)
B : scalars.

Conventionally, any term of this form is said to be an Nth order interaction energy between an nth
order multipole of moment p

(n)
A and characteristic directions sA,1, . . . , sA,n located at OA and an (N − n)th

order multipole of moment p
(N−n)
B and characteristic directions sB,1, . . . , sB,N−n located at OB , while the

potential at OB defined by the multipole at OA is just EN
〈N,0〉 with p

(0)
B = 1.

In the application of a Taylor Series Expansion to the calculation of the interaction energy between a
given charge distribution and a lattice whose sites are centers of non-overlapping charge distributions, it is
convenient to invert the order of limiting operations. First the terms for each order N are summed over the
lattice sites, and then the results are summed over N . However, since the lattice sums for N ≤ 2 converge
only conditionally, it has been shown that the physically observed value for these orders must be computed
using a summation order corresponding to the growth of a crystal of the physically specified shape.(4) If the
crystal has a shape parallel to the translation axes for the unit cell, then the series for N = 1 converges
only if the unit cell has zero net dipole moment. It has been proven(4) that the limits of the conditionally
convergent series for N = 1, 2 of this shape as well as of the absolutely convergent series for higher orders
can be computed as the unique sums given by the absolutely convergent series which occur in an extension
of EWALD’S work,(5) proposed (but not justified(4) by KORNFELD(6)). Reasons why it is convenient to
use this extension are discussed in Section 4.

The remainder of this section is devoted to the basic equations which are transformed into computa-
tionally useful forms in Section 3. To facilitate reference to a previous paper(4) on the justification of the

∗ Explicit formulae are given for the special case N = 2.(3)
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methods used here, the same notation is maintained here. In the proposed procedure the lattice is decom-
posed into sub-lattices, each of which is a simple (primitive) translation lattice in the sense that each site
for the sub-lattice is equivalent to any other site. Consider the directional derivatives for the interaction
between a multipole of order nr located at

r = 〈r1, r2, r3〉 (3)

and a crystal c of multipoles of order nc, each with the same set of characteristic directions.

Let:

〈a1,a2,a3〉: vectors which define a unit cell for the crystal, c

L = 〈Ll, L2, L3〉, an arbitrary ordered triple of integers

rL = L1a1 + L2a2 + L3a3; rL = ‖rL‖

rT : a vector whose endpoint lies at that site of the translation lattice, T , for which L = 〈0, 0, 0〉

bi: the vector reciprocal to ai, i = 1, 2, 3; i.e.,

bi = (aj × ak)/(ai · aj × ak), where 〈i, j, k〉 may undergo any cyclic permutation

qL = 2π(L1b1 + L2b2 + L3b3〉, a vector of magnitude, qL

RL,T = r− (rL + rT ); RL,T = ‖RL,T ‖. (4)

It has been shown(4) that under the stipulated hypotheses about summation order and dipole moment,
the directional derivatives summed over the points of c can be computed as

∑
{L}

∑
{T}

N∏
j=1

(sj · ∇r)R−1
L,T

 =
∑
{T}

N∏
j=1

(sj · ∇r)U ′
T (r, 0) (5a)

U ′
T (r, 0) = U ′

T,1(r, 0, ε) + UT,2(r, 0, ε) (5b)

where r is not a lattice point of T , and
ε: an arbitrary parameter with units of reciprocal distance (cf. Section 4) (6a)

U ′
T,1(r, 0, ε) =

4π

(a1 · a2 × a3)

∑
{L}

′

(qL)−2 × exp[−(qL)2/4ε2 + i(qL · r− rT )] (6b.1)

∑
{L}

′

summation over L such that L 6= 〈0, 0, 0〉 (6b.2)

UT,2(r, 0, ε) =
∑
{L}

G(εRL,T )/RL,T (6c.1)

G(X) = 1− φ(X) (6c.2)

φ(X) = 2π−1/2

∫ X

0

exp(−α2)dα (6c.3)

The modification of equation (6) which is required when r is a point of one of the translation lattices is given
in Section (3.13).
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3. DEVELOPMENT OF COMPUTATIONALLY USEFUL EQUATIONS

Since in practice there is little accurate informa tion about charge distributions (i.e., about the coeffi-
cients of more than the first partial derivatives in the Taylor Series Expansion), it is desirable to conduct
as much of the calculation as possible without using such data. Although this prohibits the reduction of
EN

(n,N−n) the single term of equation (2), it may still be possible to use merely molecular symmetry to reduce
the number of terms in the Taylor Series Expansion. For example, if a molecule has a symmetry plane, then
for an expansion about a point in the plane, the moments involving odd numbers of characteristic directions
perpendicular to the plane vanish. In any case, the Taylor Series Expansion allows the separation of the
calculation into two stages:

Stage I: Calculations involving solely crystal geometry and molecular symmetry.

Stage II: Far shorter calculations involving the In general, define by induction, multipole moments and,
therefore, a quantitative knowledge of the charge distribution.

The equations for stage I, which are developed in Section 3.1, are useful in the study of a single or
a sufficiently small number of orientations of (6a) molecules centered at the lattice sites. However, as
the number of molecular orientations increases, practice has shown that it is imperative to use equations
developed in Section 3.2 which subdivide stage I:

Stage Ia: Calculations of ‘crystal’ constants which depend solely on crystal geometry;

Stage Ib: Calculations which involve the characteristic directions and, therefore, depend upon molecular
symmetry.

Obviously, the particular number of orientations at which this decomposition becomes advantageous
depends upon the particular lattice being studied.

3.1 Development of computationally useful equations for the study of a sufficiently small number of
orientations

3.1.1. Recursion relations for directional derivatives of a function of a vector length; specialization for
UT,2(r, 0, ε) and r−1. It is convenient to develop the formulae for the directional derivatives of a general
function of a vector magnitude since: (a) equation (5) requires explicit formulae for the directional derivatives
of U ′

T,2(r, 0, ε) which depend only upon the magnitudes, RL,T ; (b) Appendix A requires the directional
derivatives of another function of a vector length, r−1.

Let:

f(R) : any function with derivatives of an arbitrary order

R ≡ r− r′; R ≡ ‖R‖ (7)

Then
(s1 · ∇r)f(R) = [df(R)/dR] · [(s1 · ∇r)R] = {R−1[df(R)/dR]} · (s1 ·R) (8)

Let:

F1(f) ≡ R−1 · [df(R)/dR]. (9a)
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In general, define by induction

Fj(f) ≡ R−1[dFj−1[f(R)]/dR], j ≥ 2. (9b)

First the successive directional derivatives for f(R) will be given as functions of the Fn(f). Then simple
recursion relations will be given for the Fn(f) for the two different f(R).

Mathematical induction upon n shows that the successive directional derivatives can be written as the
following linear combinations of the Fj(f):

N∏
j=1

(sj · ∇r)f(r) =
N∑

j=q

aN
j ({sk},R)Fj(j)

q =
{

N odd : (N+1)/2
N even : N/2

(10)

To define the aN
j , let

ηN : set of all positive integers ≤ N (11a)

DN
j ≡{c1(DN

j ), . . . , cN−j+1(DN
j )}

any set of subsets of ηN which satisfy the following four conditions :
(11b)

(1) the subsets are disjoint

(2)
N−j+1⋃

g=1
cg(DN

j ) = ηN

(3) j = N : DN
N = {c1(DN

N )}, c1(DN
N ) = ηN

is a subset of two elements of ηN , which will be denoted by {kg
1 , kg

2}

(4) g = N − j + 1:

N even, j = q = N/2: c(N/2)+1(DN
(N/2)) is empty

otherwise: cN−j+1(DN
j ): a subset of (2j − n) elements of ηN which will be denoted by

{kN−j+1
1 , . . . , kN−j+1

2j−N }

CN
j : the class of all DN

j (i.e., no account is taken of the order of the first (N − j) subsets). (11c)

For each DN
j define the products

j = N : P (DN
j , {sk},R) =

N∏
k=1

(sk ·R) (11d.1)

j 6= N, j 6= N/2 : P (DN
j , {sk},R) =

[
N−j∏
g=1

(skg
1
· skg

2
)

]
×

2j−N∏
g=1

(skN−j+1
f

·R) (11d.2)
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j = N/2 : P (DN
j , {sk},R) =

N/2∏
g=1

(skg
1
· skg

2
) (11d.3)

Then mathematical induction upon N and finite induction upon j establishes the formula:

aN
j ({sk},R) =

∑
CN

j

P (DN
j , {sk},R). (11e)

Thus, aN
j is a sum of products formed from (N − j) inner products, of the form (si ·sk), and (2j−N) factors

of the form (si ·R). The sum is made over all permutations which divide N indices into (N − j) distinct
unordered subsets of two elements each and another unordered subset of the remaining (2j −N) elements.
No account is taken of the ordering of the subsets.

The formulae for the FN (f) which occur in the derivatives of UT,2(r, 0, ε) will now be given. According
to equation (6), UT,2(r, 0, ε) is a summation over {L} of terms of the form:

g(R) ≡ [G(εR)]/R. (12)

For f(R) = g(R) differentiation and use of the definition (9) give

F1(g) = −R−3G(εR)−R−2[2ε/
√

(π)] exp(−ε2R2) (13a)

F2(g) = −3R−5G(εR) + 3R−4[2ε/
√

(π)] exp(−ε2R2) + R−2[22ε3/
√

(π)] exp(−ε2R2) (13b)

The latter equation can be rewritten in terms of elements of F1(g) as:

F2(g) =
−3F1(g) + [(−2)2ε3/

√
(π)] exp[−ε2R2]

R2
(13c)

The general recursive equation for N ≥ 2 is:

FN (g) =
−(2N − 1)FN−1(g) + [(−2)N ε2N−1/

√
(π)] exp[−ε2R2]

R2
(13d)

The proof of (13d) by mathematical induction is immediate. According to (13c) it holds for N = 2 and
differentiation shows that the hypothesis that it holds for N = h implies that it is valid for N = (h + 1).

Next, the equations will be given for the function f(R) = R−1 whose directional derivatives define
multipoles:

F1(R−1) =−R−3;

F2(R−1) =3R−5 = −3R−2F1(R−1).
(14a)

In general for N ≥ 2

FN (R−1) = −(2N − 1)R−2FN−1(R−1) = R−(2N+1)
N∏

l=1

[−(2l − 1)]. (14b)

3.1.2. Equations when r is not a lattice point of T . Since the series converges absolutely and uniformly,
the equations of the preceding section can be applied at once to obtain

N∏
j=1

(sj · ∇r)UT,2(r, 0, ε) =
N∑

j=q

∑
{L}

aN
j ({sk},RL,T )Fj(gL,T )

 (15a)
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gL,T ≡ g(RL,T ) = G(εRL,T )/RL,T (15b)

Fj(g) : cf. equation (13) (15c)

q : cf.equation (10). (15d)

Since U ′
T,1(r, 0, ε) is not solely a function of the magnitude of r−rT , the formulae of the preceding section do

not apply. However, mathematical induction applied to the differentiation of equation (6a) gives the desired
formulae:

N∏
j=1

(sj · ∇r)U ′
T,1(r, 0, ε) =


N even : 4π(−1)N/2

(a1·a2×a3)
×

∑
{L}

′ cos(qL·[r−rT ])[exp[−(qL)2/4ε2)]
∏N

j=1
(qL·sj)

q2
L

N odd : 4π(−1)(N+1)/2

(a1·a2×a3)
×

∑
{L}

′ sin(qL·[r−rT ])[exp[−(qL)2/4ε2)]
∏N

j=1
(qL·sj)

q2
L

(16)

3.1.3. Equations when r is a lattice point, rT0 . Consider now the case when r is a lattice point so that
there is a translation lattice T = T0 for which r = rT0 . The ‘self-energy’ is defined as the energy of interaction
between a multipole at a lattice point and all other multipoles of a translation lattice. Similarly, the ‘self-
potential’ is defined as the potential produced at a lattice point by all other multipoles of the translation
lattice. Without loss in generality, suppose that the coordinate system has been so chosen that

rT0 = 0 (17)

Furthermore, as a first step in the calculation of the lattice sums of directional derivatives for the self-
energy or the self-potential, suppose that the multipole at the origin, rT0 = 0, is displaced to r 6= 0 which
lies in a sphere containing no other lattice point except the origin. Then the summation over all sites but
the origin can be computed as:

∑
{L}

′ N∏
j=1

(sj · ∇r)‖r− rL‖−1 =

∑
{L}

N∏
j=1

(sj · ∇r)‖r− rL‖−1

−
N∏

j=1

(sj · ∇r)r−1

=
N∏

j=1

(sj · ∇r)[U ′
T0,1(r, 0, ε) + UT0,2(r, 0, ε)−R−1]

∑
{L}

′

: cf. equation (6b.2).

(18)

Under the assumption that the right hand side is a continuous function of r, the desired summation can be
computed as the limit of equation (18) as r → rT0 = 0:∑

{L}

′ N∏
j=1

(sj · ∇r)‖r− rL‖−1


r=0

= lim
r→0

N∏
j=1

(sj · ∇r)× [U ′
T0,1(r, 0, ε) + UT0,2(r, 0, ε)− r−1]. (19)

In Appendix A it is shown that this limit is [cf. equations (A3, 11, 12)]:

∑
{L}

′ N∏
j=1

(sj · ∇r)‖r− rL‖−1


r=0

=


N odd : zero

N even :

{
N∏

j=1

(sj · ∇r)[U ′
T0,1(r, 0, ε) + U ′

T0,2(r, 0, ε)

}
r=0

+RN
T0,2({sk}, ε)

(20a)
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N∏

j=1

(sj · ∇r)[U ′
T0,1(r, 0, ε)


r=0

=
4π(−1)(N/2

(a1 · a2 × a3)
×

∑
{L}

′

q−2
L

N∏
j=1

(qL · sj) exp[−q2
L/4ε2] (20b)


N∏

j=1

(sj · ∇r)[U ′
T0,2(r, 0, ε)


r=0

=
N∑

j=q

∑
{L}

′

aN
j ({sk},RL,T0)Fj(gL,T0)

 (20c)

RN
T0,2({sj}, ε) =

(−2)q+1ε(2q+1)aN
q ({sk})

(2q + 1)π1/2
(20d.1)

∑
{L}

′

: cf. equation (6b.2) (20d.2)

q : cf. equation (10) (20d.3)

aN
j : cf. equation (11) (20d.4)

Fj(gL,T0) : cf. equations (13, 15). (20d.5)

3.2 Development of computationally useful equations for the study of a larger number of molecular
orientations

The equations for one or a sufficiently small number of orientations were given in the preceding Section
3.1. To make calculations for larger numbers of orientations feasible, this section gives the equations for
the stages la, b so that most of the computation involving crystal geometry will be done independently of
orientation. For this purpose, it is necessary to expand the scalar products of equations (15, 16). To maintain
generality the scalar products will be expressed using the contravariant and covariant vector components.
The following sections giving the specific equations will use the standard sub- and superscript notation:

si
j ≡ ith contravariant component of sj

RL,T,i, qL,i ≡ ith covariant components of RL,T , and qL, respectively. (21)

3.2.1. Equations for the directional derivatives of UT,1. Consider first equations (16, 20b) for

N∏
j=1

(sj · ∇r)U ′
T,1(r, 0, ε)

Expansion of the scalar products gives:

N∏
j=1

(qL · sj) =
∑

{〈i1,...,iN 〉}

 N∏
j=1

sN
j

 ·
 N∏

j=1

qL,ij

 (22)

{〈i1, . . . , iN 〉}: the set of all ordered N -tuples which can be formed using the integers 1, 2, 3

Since
∏N

j=1(qL,ij
) is idependent of the index j, it is convenient to regroup the terms of equation (22) to

obtain
N∏

j=1

(qL · sj) =
∑
{ν}

(qL,1)ν1(qL,2)ν2(qL,3)ν3σ({sj}, ν) (23a)
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{ν} : the set of all ν = 〈ν1, ν2, ν3〉 for which ν1 + ν2 + ν3 = N (23b)

σ({sj}, ν) =
∑

{〈i1,...,iN 〉}ν

N∏
j=1

si
j (23c)

{〈i1, . . . , iN 〉}ν : the subset of {〈i1, . . . , iN 〉} for which ij has the value one for ν1 distinct j, the value two
for ν2 distinct j, the value three for ν3 distinct j.

Before substituting equation (23) into equations (16, 20b), it is desirable to regroup the terms of the
latter to reduce the number of numerical operations by separating that part of the calculation(25) which
depends only upon the magnitudes, qL, from that part which depends upon the components, qL,i.

Therefore, suppose {qL} is divided into subsets of vectors of equal non-vanishing magnitudes:

C(M1), C(M2), . . . (24)

Mi: the common magnitude of the qL in the subset C(Mi).

Then substitution of equation (23) into equations (16, 20b) gives

N∏
j=1

(sj · ∇r)U ′
T,1(r, 0, ε) =

∑
{ν}

σ({sj}, ν)KN
T,1(ν, r, ε) (25a)

KN
T,1(ν, r, ε) = BN

∑
{Mi}

P (ν, r, C(Mi))M−2
i exp(−M2

i /4ε2) (25b)

ν : equation (23b) (25b.1)

BN =
{

N even : [4π(−1)N/2/(a1 · a2 × a3)
Nodd : [4π(−1)(N+1)/2/(a1 · a2 × a3)

(25b.2)

P (ν, r, C(Mi)) =


N even :

∑
C(Mi)

[
3∏

i=1

(qL,i)νi

]
cos(qL · [r− rT ])

Nodd :
∑

C(Mi)

[
3∏

i=1

(qL,i)νi

]
sin(qL · [r− rT ])

(25b.3)

For T = T0, r = rT0 = 0, this reduces to

P (ν,0, C(Mi)) =

{
N even :

∑
C(Mi)

[
3∏

i=1

(qL,i)νi

]
Nodd : zero

(25b.4)

3.2.2. Equations for the directional derivatives of UT,2(r, 0, ε). While the preceding section developed
the desired regrouping of terms in the directional derivatives of U ′

T,1(r, 0, ε), this section is devoted to the
regrouping for UT,2(r, 0, ε). Each aN

j ({sk},RL,T ), of equation (15) is a sum of products, P (DN
j , {sk},RL,T ),

defined by equation (11). As a first step in the regrouping, consider the factor
∏2j−N

j=1 (skN−j+1
f

· RL,T ) of

P (DN
j , {sk},RL,T ) which occurs whenver j 6= N/2, N even. Expansion of the scalarproducts gives

j 6= N/2 :
2j−N∏
j=1

(skN−j+1
f

·RL,T ) =
∑

{〈i1,...,i2j−N 〉}

2j−N∏
f=1

si
kN−j+1

f

 ·
2j−N∏

f=1

RL,T,if
)

 (26)

{〈i1, . . . , i2j−N 〉}: the set of all ordered (2j −N)-tuples such that if = 1, 2, or 3.
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Since the second factor in the sum is independent of any permutation of the kN−j+1
f , it is convenient

to define
s(cN−j+1) ≡ set of skN−j+1

f
such that kN−j+1

f is in cN−j+1(DN
j ) (27)

and to regroup the terms of equation (26) to obtain

j 6= N/2 :
2j−N∏
f=1

(skN−j+1
f

·RL,T ) =
∑

H(〈j,N〉)

[
3∏

i=1

RL,T,i

]hi

σ(s(cN−j+1),h) (28a)

σ(s(cN−j+1),h) =
∑

{〈i1,...,i2j−N 〉}h

2j−N∏
f=1

si
kN−j+1

f

(28b)

{〈i1, . . . , i2j−N 〉}h : the subset of {〈i1, . . . , i2j−N 〉}for which
if = 1 for h1 values of f, 2 for h2 values of f, and 3 for h3 values of f

(28c)

H(〈j, N〉) ≡ set of all h = 〈h1, h2, h3〉 such that h1 + h2 + h3 = 2j −N. (28d)

It is convenient to introduce, notation for the products of the (sα · sβ) which occur as factors of the
P (DN

j , {sk},RL,T ). Define 
j = N : P (DN

j , {sk},RL,T ) = 1

j 6= N : P (DN
j , {sk},RL,T ) =

N−j∏
g=1

(skg
1
· skg

2
).

(29a)

Also, to simplify the writing of the equations, introduce the special definition:

j = N/2, σ(s(cN/2+1),0) ≡ 1. (29b)

Then, for all j:

aN
j ({sk},RL,T ) =

∑
H(〈j,N〉)

3∏
i=1

[RL,T,i]hi ×


∑
CN

j

P (DN
j , {sk},RL,T )σ(s(cN−j+1,h)

 (30)

Before substituting equation (30) into equation (15), it is desirable to regroup terms to reduce the
number of numerical operations. For this purpose, the vectors, RL,T , are partitioned into classes of equal
non-vanishing magnitudes,

C(M1), C(M2) . . . (30)

Mi: the common magnitude of all vectors in C(Mi).

Define the sum over C(Mi):

KN
T,2(r,h,Mi) =

∑
C(Mi)

3∏
i=1

(RL,T,i)hi (32)

Then for each h in H(〈j, N〉) define the sum over the set {Mi} required by equation (15):

KN
T,2(ε, r,h, j) =

∑
i

KN
T,2(r,h,Mi)Fj [g(Mi)] (33)
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g : cf. equation (15b).

Use of equations (15, 30, 32, 33) gives:

N∏
j=1

(sj · ∇r)[UT,2(r, 0, ε) =
N∑

j=q

∑
{L}

aN
j ({sk,RL,T )Fj(gL,T )


=

N∑
j=q

∑
H(〈j,N〉)

KN
T,2(ε, r,h, j)×


∑
CN

j

P (DN
j , {sk})(s(cN−j+1),h)

 .

(34)

The preceding equation, which holds for general coordinate systems, requires a significantly greater
number of numerical operations and greater mount of machine storage than the equations specialized for
orthogonal Cartesian systems. Comparison of the general equation (34) with the special form which will
now be developed will show that the latter is in general to be preferred even when the crystal axes are not
orthogonal. Thus, it has been used in the calculations on ice discussed in Section 4, despite the fact that the
lattice is hexagonal.

Since for orthogonal Cartesian systems, covariant and contravariant components are identical, it is
convenient to expand the scalar products of the P (DN

j , {sk}) of equation (29a) to introduce the σ({sk}, ν)
required for the directional derivatives of UT,1. This gives

P (DN
j , {sk})(s(cN−j+1),h) =

 ∑
{〈i1,...,iN−j〉}

N−j∏
g=1

si
kg
1
si

kg
2

 σ(s(cN−j+1,h) (35)

{〈i1, . . . , iN−j〉}: set of all ordered (N − j)-tuples such that for each g, ig = 1, 2, or 3.

Any one of the products can have the ith components of νi different sj as factors ↔ νi − hi is an even
positive integer or zero. Therefore, define

H(〈j, N, ν〉) : the subset of H(〈j,N〉) of equation (28d) for which (νi − hi) is
an even positive integer or zero for a fixed ν.

(36)

Consider any ν which satisfies equation (23b) and any h which satisfies equations (28d, 36), (i.e., h in
H(〈j, N, ν〉)). Then the summation of equation (34) over the DN

j in the class CN
j defined by equation (11)

presents an elementary combinatorial problem which has as its solution:

∑
CN

i

P (DN
j , {sk})σ(s(cN−j+1,h) =

∑
CN

j

 ∑
{〈i1,...,iN−j〉}

N−j∏
g=1

si
kg
1
si

kg
2

×
∑

{〈i1,...,i2j−N 〉}h

2j−N∏
f=1

si
kN−j+1

f

=I(ν,h)σ({sk}, ν)

(37a)

I(ν,h) =
3∏

i=1

[νi!/(2titi!hi!)] (37b)

ti = (νi − hi)/2 (37c)

Substitution of equation (37a) into (30) and use of the definition (36) for H(〈j,N, ν〉) gives

aN
j ({sk},RL,T ) =

∑
{ν}

σ({sk}, ν)
∑

H(〈j, N, ν〉)I(ν,h)
3∏

i=1

[RL,T,i]hi . (38)
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The same procedure used in the case of the general coordinate systems now gives equations which have
been broken down into convenient computational steps:

N∏
j=1

(sj · ∇r)[UT,2(r, 0, ε) =
∑
{ν}

KN
T,2(ν, r, ε)σ({sk}, ν) (39a)

KN
T,2(ν, r, ε) =

N∑
j=q

KN
T,2(j, ν, r, ε) (39a.1)

KN
T,2(j, ν, r, ε) =

∑
i

KN
T,2(j, ν, r,Mi)Fj [g(Mi)] (39a.2)

KN
T,2(j, ν, r,Mi) =

∑
H(〈j,N,ν〉)

KN
T,2(j, ν, r,Mi,h) (39a.3)

KN
T,2(j, ν, r,Mi,h) = I(ν,h)

∑
C(Mi)

3∏
i=1

(RL,T,i)hi (39a.4)

Finally, consider the values for the directional derivatives of U ′
T0,2 which occur in equation (20c). Since

by definition each Mi 6= 0 comparison with equation (34) shows that these limits have the form which occurs
in (39): 

n∏
j=1

U ′
T0,2(r, 0, ε)


r=0

=
∑
{ν}

KN
T0,2(ν,0, ε)σ({sk}, ν). (39b)

3.2.3. Introduction of constants independent of ε and introduction of dimensionless forms. In using the
preceding formulae, it is important to remember that the lattice sum for a given translation lattice fails
to converge for the summation order corresponding to crystal growth for N = 1. Nevertheless, even for a
conditionally convergent series, the desired limit for the entire lattice has been obtained using absolutely
convergent series. In the final equations for the contribution which each lattice, T , makes to the absolutely
convergent series, it is convenient to define the sums KN

T (ν, r) which are independent of the arbitrary
parameter, ε:.

Contribution of each T to the lattice sum =
∑
{ν}

KN
T (ν, r)σ({sk}, r)

KN
T (ν, r)

{
T 6= T0 : KN

T,1(ν, r, ε) + KN
T,2(ν, r, ε)

T = T0 : (i.e., r = rT0 = 0){
N odd : zero
N even : [KN

T0,2(ν,0, ε) + RN
T0,2({sk}, ε)] (40)

KN
T,1(ν, r, ε) cf. equation (25)

KN
T,2(ν, r, ε) cf. equation (39a)

KN
T0,1(ν,0, ε) cf. equation (25b.4)

KN
T0,2(ν,0, ε) cf. equation (39b)

RN
T0,2({sk}, ε) cf. equation (20d.1)

For clarity and convenience, the computational steps that are used to evaluate equation (40) are sum-
marized in Appendix B.
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To simplify numerical input for the multipole calculation it is convenient to change to dimensionless
variables by introducing a parameter, r0:

r0 : a convenient standard distance within the crystal. (41)

Let all distances be scaled by r0 and ε be replaced by a dimensionless parameter ε0 defined by the
equation

ε = ε0/r0 (42)

Then, it can be shown that
KN

T,i(ν, r, ε) = [KN
T,i(ν, r/r0, ε0)]/rN+1

0 . (43)

Thus, whenever the crystal structure has only one variable parameter, r0, the dimensionless KN
T (ν, [r/r0])

are independent of measured lengths.

3.3. Use of molecular symmetry

To separate out all dependence upon the quantitative charge distribution, it is convenient to proceed
as follows. As noted previously, in general, it is not possible to reduce the EN

〈n,N−n〉(〈TA, TB〉) to the single
term of equation (2) without introducing a specific assumption about the quantitative charge distribution.
In such a case, the best that can be done is to select a molecular coordinate system to reduce the number of
terms with nonvanishing moments. Let:

uα
1 ,uα

2 ,uα
3 : unit vectors defining the 3 axes for the molecular system of a molecule of type α.

{s}m
α : any set of m characteristic directions for a molecule of type α for which the moment, p({s}m

α ) 6= 0

nα,i: the number of the m characteristic directions which lie along uα
i . (44)

In this case, the furthest the calculation can proceed without an assumption about the quantitative charge
distribution is to compute the relative energy for each pair {〈{s}n

A, {〈{s}N−n
B 〉}, i.e., the energy when

p({s}n
A) = p({s}N−n

B ) = 1. When account is taken of the multiplicity of the terms in the Taylor Series,
the contribution is

E(〈{s}n
A, {〈{s}N−n

B 〉 =

[
3∏

i=1

nA,i!

]−1 [
3∏

i=1

nB,i!

]−1 ∑
τ

(−1)nT ×
∑
{ν}

σ({sk}, ν)KN
T (ν, [r/r0]) (45)

τ({s}n
A, {s}N−n

B ): the set of interactions with {s}n
A at r and {s}N−n

B at the sites of T or vice versa.

{s}: the characteristic directions of {s}n
A and {s}N−n

B expressed in the coordinate system used for the lattice.

Then the assumption about the quantitative charge distribution enters the Nth order interaction energy
only in the comparatively short sum:

E(〈TA, TB〉) =
∑

{〈{s}n
A

,{s}N−n
B

〉}

p({s}n
A)× p({s}N−n

B )E(〈{s}n
A, {s}N−n

B 〉). (46)
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4. CONCLUSIONS

The use of a multipole expansion permitted the calculation to be split into two stages:

Stage I. A calculation which depends solely on the crystal geometry and on the symmetry of the molecule.

Stage II. A comparatively very small part of the calculation which uses the multipole moments, and,
therefore, requires a quantitative knowledge of the charge distribution.

The proposed method of evaluating the lattice sum is based on an extension of EWALD’s Formulae(5)

for the optical and electrostatic properties of ionic lattices. This has two general advantages.

(1) Convenient error check. One of the most important criteria of evaluating a machine method is the
existence of a means to test for errors in input, algebra; or programs. The functions U ′

T,1 and UT,2 (and
their derivatives) depend upon the arbitrary parameter ε, but their sum, U ′

T (and its derivatives) does not.
Experience has shown that the repetition of the calculation for two different values of ε has provided a means
of detecting some errors in input and any errors in algebra or programming. Other common methods lack
such a simple error cheek. It is imperative to note that approximate agreement is meaningless. Two values
for a given U ′

T (r, 0) which agreed to a few per cent were found to be in error by one hundred per cent.

(2) Rapidity of convergence. In general, the series given by the extended Ewald method should converge
more rapidly than those given by the original Taylor Series (vide infra for a comparison of economy of the
two). Since a decrease [increase] in ε will cause U ′

T,1(r, 0, ε)[U ′
T,2(r, 0, ε)] to converge more rapidly, values

should be chosen in a range to minimize the total work. KORNFELD(6) was the first to propose the extension
of EWALD’s Formulae(5) and gave equations for N = 2 and one special case for N = 4. The present paper
has both generalized his work and developed forms adapted to machine calculations.

More recently, DEWETTE and NIJBOER(7) published an alternative set of equations in the notation of
spherical harmonics, derived as a special case of their very valuable general approach to the transformation
of series into more rapidly convergent forms. Their work had a different primary purpose than the present
study has. Their equations were designed to facilitate the calculation at a set of nonlattice points, while the
equations of this paper are designed for convenience and economy of calculation at lattice points or a single
non-lattice point. Consequently, they carried out an added expansion which is vital for their purpose but is
not useful for the problem considered here. For the latter type of calculation the equations proposed here
have the advantages: (a) they have been cast in forms which are simpler for coding the machine program; (b)
the resulting programs can be expected to be more economical in machine time for the following reason: since
they are based on Cartesian systems, they make more use of algebraic functions and less use of transcendental
functions which require much more computer time.

Specific results in this paper can be summarized as follows. Section 3.12 develops general recursion
relations which permit the deduction of the general equations for the self-energy and the self-potential
in Section 3.1.3 and Appendix A. Section 3.1.2 casts the general equations for the directional derivatives
defining the interaction energy in forms adapted to calculations for a sufficiently small number of molecular
orientations for any particular fixed point in the crystal. Section 3.2 decomposes Stage I to give equations
valid in general Cartesian systems and then special forms for orthogonal systems which will generally be
more economical to use even if the unit cell axes are not orthogonal. For the latter case, the steps in the
calculation can be summarized as follows:

Stage Ia: Use solely crystal geometry to compute the dimensionless crystal constants

For each order N , and each translation lattice T , follow the steps outlined in Appendix B.1 to compute

KN
T (ν, [r/r0]) = rN+1

0 KN
T (ν, r) (47)
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Stage Ib: Use molecular symmetry plus crystal geometry

Follow Appendix B.2 to calculate the relative energies defined by equation (45).

Stage II. Use the multipole moments and, therefore, the quantitative charge distribution

Combine the relative energies from Stage Ib with the multipole moments to compute the Nth order
interaction energies of equation (46). Then sum over N in equation (1). Appendix B summarizes various
subprograms and procedures which calculations on the ice lattice have shown to be convenient. A few
results of this study will illustrate how important this ‘convenience’ is. First, depending upon the orientation
assumed, the following ratios were found to cover the ranges

0.303 ≤
∣∣∣∣Dipole−Dipole Energy
Total Multipole Energy

∣∣∣∣ ≤ 0.525

0.117 ≤
∣∣∣∣Nearest Neighbor Dipole−Dipole Energy

Total Lattice Dipole−Dipole Energy

∣∣∣∣ ≤ 1.025.

In the actual study, it turned out to be desirable to include interactions for orders ≤ 8∗. Thus it is
necessary to have a method which can handle higher order multipole interactions and can make lattice sums
including interactions between more distant neighbors. Tests showed that for an eighth order interaction,
a next nearest neighbor calculation based on the original multipole expansion would require over two and
one-half times as much computation as the accurate calculation following the proposed procedure for eight
orientations. The ratio would become even larger if the number of orientations were increased.

The detailed results of the ice study are analyzed in terms of their implications for the theory of the
hydrogen-bond and the structure of ice in a following paper.
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APPENDIX

(A) Derivation of equations required for the calculation of the ‘self-potential’ and ‘self-energy’

Without loss in generality, in the calculation of the ‘self-energy’ or the ‘self-potential’ of a lattice T = T0,
the origin of the coordinate system is chosen so that

rT0 = 0 (A.1)

According to equation (19) the desired lattice sum is to be determined by the limiting process:∑
{L}

′ N∏
j=1

(sj · ∇r)‖r− rL‖


r=0

= lim
r→0

 N∏
j=1

(sj · ∇r)

 [U ′
T0,1(r, 0, ε) + UT0,2(r, 0, ε)− r−1]. (A.2)

∑
{L}

′

: summation over L 6= 〈0, 0, 0〉.

It follows at once from equation (16) that the limit of the first term exists and equals

lim
r→0

N∏
j=1

(sj · ∇r)U ′
T0,1(r, 0, ε) =


N∏

j=1

(sj · ∇r)U ′
T0,1(r, 0, ε)


r=0

=


N odd : zero

N even : 4π(−1)N/2

(a1·a2×a3)

∑
{L}

′
q−2
L

N∏
j=1

(q · sj)× exp[−q2
L/4ε2].

(A.3)

The remaining two terms both diverge and it is only their difference which possesses a finite limit.
Inspection of equations (15, 4, 11, 13) shows that the only divergent term in the series for UT0,2 is the term
for rL = 0. Therefore, it is convenient to define

N∏
j=1

(sj · ∇r)U ′
T0,2(r, 0, ε) =

N∑
j=q

∑
{L}

′

aN
j ({sj}, RL,T0)Fj(gL,T0). (A.4)

Then

lim
r→0

N∏
j=1

(sj · ∇r)[UT0,2(r, 0, ε)− r−1] =

 N∏
j=1

(sj · ∇r)UT0,2(r, 0, ε)


r=0

+

lim
r→0

N∑
j=q

aN
j ({sk}, r)[Fj(g[εr])− Fj(r−1)]

(A.5a)

Fj(g), Fj(r−1) cf. equations (13, 14) (A.5b)

g : cf. equation (12). (A.5c)

To evaluate the remaining limit in equation (A.5a), the various Fj(g[εr]) and Fj(r−1) are rewritten in
terms of Fq(g[εr]) and Fq(r−1) respectively (q is defined in equation (10)). For the Fj(r−1) equation (14)
gives:

Fj(r−1) = Fq(r)


j∏

k=q+1

[−(2k − 1)]/r2|j−q|

 . (A.6)
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The following general relation between Fs(g[εr]) and

Fj(g[εr]) holds for q ≤ s ≤ (j − 1). It can be verified directly from equation (13d) for s = j − 1 and
established in general by finite induction:

Fj(g[εr]) =

{
j∏

k=s+1

[−(2k − 1)]/r2|j−s|

}
Fs(g[εr]) +

j∑
k=s+1

{
(−2)kε(2k−1)e−ε2r2

π1/2r2(j+1−k)

}

×

δj
k + (1− δj

k)
j∏

p=k+1

[−(2p− 1)]

 .

(A.7)

Then substitution of both (A.6) and (A.7) [for s = q] into the second term on the right hand side of
(A.5a) gives:

N∑
j=q

aN
j ({sk}, r)[Fj(g[εr])− Fj(r−1)] ≡ S1 + S2 (A8.a)

S1 ≡ {Fq(g[εr])− Fq(r−1)} ×

aN
q ({sk}, r) +

N∑
j=q+1

aN
j ({sk}, r)

∏j
k=q+1[−(2k − 1)]

r2|j−q|

 (A.8b)

S2 ≡
N∑

j=q+1

aN
j ({sp}, r)

j∑
k=q+1

{
(−2)kε(2k−1)e−ε2r2

π1/2r2(j+1−k)

}
×

δj
k + (1− δj

k)
j∏

p=k+1

[−(2p− 1)]

 . (A.8c)

When N is odd, the following observations show that both S1 and S2 have the limit zero as r → 0:

Observation (1). By equation (11e) each aN
j ({sk}, r) is a sum of products, P (DN

j , {sk}, r) and by (11d.2)
each product of the sum has as factors (2j −N) components of r.

Observation (2). Consider now the exponent of r in the denominators. For S2, the maximum power
occurs for the minimum k = q + 1. Thus, the maximum power is 2(j + 1 − k) = 2(j − q). This is also
the exponent of r in the denominator of S1. According to equation(10), q = (N + 1)/2, when N is odd.
Therefore, the maximum exponent of the denominator, 2(j − q) = 2j −N − 1 < 2j −N . Thus, when N is
odd, S1 and S2 have the limit zero.

Consider now the case when N is even. According to equation (10), q = N/2. S1 is, in general, non-
vanishing. Consider the summation over k in S2. The only term which has a non-zero limit is the term for
which k has its minimum value, q + 1. This is a consequence of the fact that for k > q + 1, the exponent of
1/r is 2(j + 1− k) < 2(j + 1− [q + 1]) = 2j −N . Thus the limiting value of the sum S1 + S2 becomes

lim
r→0

(S1 + S2) = lim
r→0

N∑
j=q

aN
j ({sj}, r)[Fj(g[εr])− Fj(r−1)]

=


N odd : zero

N even : lim
r→0

S1 + lim
r→0

{
(−2)q+1ε(2q+1) exp(−ε2r2)

π1/2

}
×


N∑

j=q+1

aN
j ({sp},r)[δj

q+1+(1−δj
q+1)

j∏
p=q+2

(−[2p−1])

r2|j−q|

 .

(A.9)
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According to equation (10), when N is even q = N/2 and according to equation (11d.3), aN
N/2 is

independent of r. Therefore, each neighborhood of r = 0 contains an r for which the multiplier of [Fq(g[εr])−
Fq(r−1)] in S1 vanishes. It can be rewritten as:

q = N/2 : aN
q ({sk})+[−(2q+1)]

N∑
j=q+1

{
aN

j ({sk}, r)
r2|j−q|

}
×

δj
q+1 + (1− δj

q+1)
j∏

k=q+2

[−(2k − 1)]

 = 0. (A.10)

For each such r, S1 = 0 and comparison shows that the summation of the { } of the second limit of
(A.9) can be replaced by aN

q ({sk})/(2q + 1) so that

lim
r→0

N∑
j=q

aN
q ({sk}, r)[Fj(g[εr])− Fj(r−1)] =

{
N odd : zero
N even : (−2)q+1ε2q+1aN

q ({sk})
(2q+1)π1/2

≡ RN
T0,2({sk}), ε). (A.11)

Substitution of (A.11) into (A.5) and combination with (A.2,3) gives the final equation for the self-energy
or the self-potential:∑

{L}

′ N∏
j=1

(sj · ∇r)‖r− rL‖


r=0

=


N∏

j=1

(sj · ∇r)[U ′
T0,1(r, 0, ε) + U ′

T0,2(r, 0, ε)]


r=0

+ RN
T0,2(sk, ε). (A.12)

(B) Steps in the procedure for the machine calculation For clarity and convenience the steps in the
machine calculation for stages Ia,b and II will be summarized for the case-generally the most economical in
computer time-when an orthogonal Cartesian axis is used.

B.1. Stage Ia. Calculation of the crystal constants. According to equation (40), the crystal constants
vanish for the self-potential or the self-energy (i.e., T = T0) whenever N is odd. In all other cases the
following procedure applies.

1. Generate vectors and calculate functions of vector magnitudes.

(i) Generate the dimensionless vectors, r0qL (cf. equation (4)], order them into classes of non-vanishing
magnitudes, Mi. For two values of the dimensionless arbitrary parameter, ε0 = εr0, compute the exponentials
of equation (16).

(ii) For each T , generate the dimensionless vectors RL,T /r0 [cf. equation (4)], order them in classes of
non-vanishing magnitudes, Mi, and compute the FN (g[ε,Mi]) [cf. equation (13)] for each of two values of
the arbitrary dimensionless parameter, ε0.

2. For each order N generate the ν which satisfy equation (23b).

3. For each order N , complete the calculation of the dimensionless KN
T,1(ν, [r/r0], ε0) following equation

(25).

4. For each order N , and for each T complete the calculation of the KN
T,2(ν, [r/r0], ε0) in the following

steps.

(i) For each j, q ≤ j ≤ N [cf. equation (10)] generate the h of H(〈j,N, ν〉) defined by equations (28d,
36). For each 〈ν,h〉 calculate the symmetry numbers I(ν,h) of equation (37b). For convenience the allowed
〈ν,h〉 and the symmetry numbers are listed in Table 1 for N ≤ 5.
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(ii) For each such j,h, calculate the

KN
T,2(j, bfν, [r/r0],Mi,h)

defined by equation (39a.4) for each class, C(Mi).

(iii) Calculate KN
T,2(j, ν, [r/r0],Mi) of equation (39a.3) by summing over H(〈j, N, ν〉).

(iv) For each j and ν, use the results of steps (1.ii) and (4.iii) to compute

KN
T,2(j, ν, [r/r0], ε0)

by equation (39a.2)

(v) Following equation (39a.1), sum the results of step (4.iv) over j to obtain

KN
T,2(ν, [r/r0], ε0).

5. For each order N calculate the dimensionless crystal constants using the results of steps 3 and 4.

(i) T 6= T0 : KN
T (ν, [r/r0]) = KN

T,1(ν, [r/r0], ε0) + KN
T,2(ν, [r/r0], ε0)

(ii) T = T0: When N is even, compute the RN
T0,2({sk}, ε0) of equation (A.11). Then calculate

KN
T0

(ν,0) = KN
T0,1(ν,0, ε0) + KN

T0,2(ν,0, ε0) + RN
T0,2({sk}, ε0).

6. Reorder the allowed sequence of ν to eliminate any ν for which the crystal constant vanishes.

B.2. Stage Ib. Calculation of the sums of components of characteristic directions and of relative energies

Consider an interaction of order N = N0 corresponding to the characteristic directions s1, . . . , sN0 . The
first step in Stage lb is to evaluate the σ({sk}, ν) of equation (23c). Although it seems more straightforward
to construct the permutations allowed by equation (22) and then to determine the ν for each permutation,
since the crystal constants vanish for some ν, it is better to use an array of the ν for which KN

T (ν, [r/r0]) 6= 0
and for each ν of the array to construct the products of the sum σ({sk}, ν) using a nested sequence of loops
to select the components of the characteristic directions.

Frequently the calculations at order N0 can be shortened by using results from lower orders. Suppose
that the sequence of characteristic directions s1, . . . , sN0 has d distinct elements which form the sequence

s1, . . . , sid
(B.1)

and that
Nj ≡ number of sk of the jth type , 1 ≤ j ≤ d. (B.2)

The calculation can be shortened whenever Nj > 1 for some j. This will commonly be the case since
the reduction of the sum of all the Nth order multipoles in the Taylor Series to a single multipole requires
quantitative knowledge of the charge distribution, and in lieu of such knowledge, frequently the best that
can be done is to use molecular symmetry in the selection of three axes to minimize the number of Nth
order terms in the Taylor Series with non-vanishing moments. This, of course, leads to Nj > 1. Let:

νN0 : an arbitrary ν for any particular N = N0 (B.3)
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{〈νN1 , . . . , νNd
〉} : the set of all d−tuples such that

d∑
j=1

νNj = νN0 (B.4)

Then, provided there is sufficient machine storage available to preserve the results from lower orders,
σ({sj}, νN0) can be computed most economically as

σ({sj}, νN0) =
∑

{〈νN1 ,...,νNd
〉}

d∏
j=1

σ({sij}, νNj ). (B.5)

After the σ({sj}, ν) have been computed, then the relative energies E(〈{s}n
A, {s}N−n

B 〉) are computed
by the summation of equation (45).

Table 1. Values of ν, h and I(〈ν,h〉), N ≤ 5

N j νr νs νt hr hs ht I(〈ν,h〉)

2 1 2 0 0 0 0 0 1
3 2 3 0 0 1 0 0 3

2 1 0 0 1 0 1
4 3 4 0 0 2 0 0 6

3 1 0 1 1 0 3
2 2 0 2 0 0 1

0 2 0 1
2 1 1 0 1 1 1

4 2 4 0 0 0 0 0 3
2 2 0 0 0 0 1

5 4 5 0 0 3 0 0 10
4 1 0 2 1 0 6
3 2 0 1 2 0 3

3 0 0 1
3 1 1 1 1 1 3
2 2 1 0 2 1 3

2 0 1 1
5 3 5 0 0 1 0 0 15

4 1 0 0 1 0 3
3 2 0 1 0 0 3
2 2 1 0 0 1 1

The columns headed by νr, νs, νt are to be any permutation of ν1, ν2, ν3, The columns headed by hr,
hs, ht give the allowed values of the corresponding components of the vector, h. Whenever j = N,h = ν
and I(〈ν,h〉) = 1.
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